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Abstract. A key characteristic of biological systems is the continuous life cycle where cells are born, grow
and die. From a dynamical point of view the events of cell division and cell death are of paramount
importance and constitute a radical departure from systems with a fixed size. In this paper, a globally
coupled circle map where elements can dynamically be added and removed is investigated for the conditions
under which differentiation of roles can occur. In the presence of an external source, it is found that
populations of very long-living cells are sustained by short-living cells. In the case without an external
source, it is found that at higher nonlinearities of the local map, large populations cannot be sustained
with a previously employed division strategy but that a different and conceptually equally natural division
strategy allows for differentiation of roles.

PACS. 05.45.Ra Coupled map lattices

1 Introduction

Coupled Map Lattices have widely been studied as sim-
ple and efficient paradigms for the complex dynamics of
higher dimensional systems in e.g. Mathematics, Physics
and Chemistry. Generally, the investigated models cover-
ing these fields are characterized by a fixed system size
where the coupling can be local [1–7], global [8–11] or in-
termediate [12–15]. Although the range of observed phe-
nomena in these systems is extremely wide, they do lack
one essential aspect that is of paramount importance to
the study of biological networks: The dynamical addition
and removal of elements. Since ordinary coupled map lat-
tices have proven to be very valuable tools, it is sensi-
ble to attempt an extension of that approach despite the
fact that biological systems are usually vastly more com-
plex than the systems commonly studied in Physics and
Chemistry. The relevance of this idea was strikingly il-
lustrated by Ko and coworkers who found that the dy-
namical state of E.Coli bacteria (in the absence of mu-
tations) is not determined entirely by its environment
and its genome as often believed, but that even with an
identical genome and in an identical environment, cells
with different phenotypes can emerge [16]. Indeed, the no-
tion that cells with identical genotype can express them-
selves differently depending on their state underlies exper-
imental studies where phenotypic behaviors mimic logi-
cal operations leading to the cells performing controllable

a e-mail: willeboordse@yahoo.com;
URL: http://www.willeboordse.ch/science/

computations like e.g. a genetic toggle switch [17–20].
These phenomena are reminiscent of the clustering de-
scribed by Kaneko for globally coupled logistic maps [8]
and a basis for Kaneko and Yomo’s isologous diversifi-
cation theory [21] which was introduced as a framework
for understanding cell differentiation from the viewpoint
of complex systems. Even though compared to the actual
chemical reactions occurring in a cell, the model equations
of the isologous diversification theory are a vast simplifica-
tion, being differential in nature, they are still significantly
too complicated to serve as a true toy model. Kaneko
therefore introduced the coupled map with growth and
death studied in this paper in order to have a simple sys-
tem for investigating possible dynamics [22].

This paper is organized as follows: in Section 2,
Kaneko’s model as introduced in reference [22] is out-
lined and his main results are briefly summarized. It is
argued that it is of interest to consider other values of a
key parameter, the source term s, besides the single fixed
non-zero value investigated in reference [22] and that the
dynamics display distinct features for s = 0 and for s
larger or smaller than a critical value sc (Kaneko’s value
of s is above sc). The dynamics of the system for s > sc

is described in Section 3 and extends Kaneko’s results by
considering long simulation times that can lead to popu-
lations of long-living cells while the dynamics for s < sc is
described in Section 4 and studied here for the first time.
Sections 5 and 6 investigate the dependence of the system
on parameter settings and division-mutation strategies re-
spectively that were not considered before and show that



140 The European Physical Journal B

co-existing long and short-living cells can exist for a cer-
tain division strategy. A conclusion with a brief discussion
of the results is presented in Section 7.

2 Model

The coupled map with growth and death Kaneko intro-
duced in reference [22] consists of elements with oscilla-
tory internal dynamics, called cells for convenience and is
given by

xi
n+1 = xi

n + f(xi
n) + Sn, (1)

Sn =
s − ∑

j f(xj
n)

N
, (2)

with n the discrete time, i an index uniquely identifying a
cell, Sn a source term and N the total number of cells. The
source term Sn is designed such that the sums of the cells
before and after applying equation (1) exactly differ by
the externally supplied amount s. The oscillatory nature
of the cell’s internal state is represented by choosing the
circle map

f(x) =
K

2π
sin(2πx) (3)

as the non-linear local map where the parameter K deter-
mines the nonlinearity which ranges from zero to 2π. The
Feigenbaum accumulations point, the smallest value of K
where chaos is possible here, is around K = 2.72 and there
is large window from around K = 4.6 to K = 5.26. The
local dynamics only depend on the phase or in other words
the fractional part of xi. The conditions for the splitting
or death of a cell are:

• A cell splits if x > Tg with Tg = 10
• A cell dies if x < Td with Td = 0.

The exact values for Tg and Td are generally not important
for the qualitative aspects of the local dynamics as long
as they are integer values since equation (1) is period 1.
Nevertheless, if Tg−Td is an integer value somewhat larger
than 1, cells can change their winding number (the inte-
ger part of x) before stabilizing and thus the existence of
several different winding numbers can play an important
role for the global dynamics. Except when mentioned oth-
erwise, upon splitting, the two daughter cells each receive
half of the parents cell’s fractional part. Furthermore a
small random number δ (here 10−9 is used) is added to
one daughter cell and subtracted from the other daughter
cell in order to introduce a slight difference between the
new cells.

Overall, equation (1) is a type of globally coupled
map [8]. Globally coupled maps have widely been stud-
ied and are often characterized by the dynamics of their
clusters which are defined as follows: When two elements
xi are very close, i.e. |xi − xj | < ε with ε a small number
(in this paper ε = 10−5 is used), they are considered to
belong to the same cluster. An attractor can in principle
consist of any number of clusters ranging from a single
large cluster to N one-element clusters. Following [8], the

clusters of an attractor are labeled as N1, N2, . . ., Nk in
order of size with N1 being the largest cluster and k the
total number of clusters (consequently

∑k
j=0 Nj = N).

Based on cluster arrangement, four phases are well-known
to be common among globally coupled maps: 1) Coherent
phase where N1 = N is dominant, 2) Ordered phase where
k is relatively small and independent of N , 3) Partially
ordered phase where ordered-phase type few cluster at-
tractors coexist with large-k many-cluster attractors (for
many-cluster attractors k is dependent on N), 4) Turbu-
lent phase where k ≈ N .

Similarly, the dynamics of equation (1) can be classi-
fied by four main phases that occur when increasing the
nonlinearity K:

1) Coherent phase where all the elements are part of a
single cluster,

2) Ordered Phase where elements tend to be synchronized
into a few clusters,

3) Partially Ordered Phase where the elements can dy-
namically join and leave a cluster, and

4) Desynchronized Phase where the elements′ oscillations
are usually desynchronized 1.

Although the four phases of the model with growth and
death share many features in common with the four phases
of a fixed system-size globally coupled map, there are also
essential differences. For example, during the rather long
transient of the partially ordered phase there are two sep-
arate temporal regimes, one in which the total number
of cells fluctuates around O(10) and one where the total
number of cells grows to O(100), whereas in the desynchro-
nized phase the total number of cells after some transient
time is limited to O(10) regardless of the initial number
of cells.

While mostly, for the overall behavior of the system,
the exact value of the global source term s in equation (1)
is not very important, there are nevertheless three distinc-
tive regimes. Firstly, there is a distinction of whether there
is a global source at all. Without a source, the dynamics
is entirely determined by the interaction of the elements.
If there is a source, however, even when it is very small,
cells have an intrinsic tendency to grow and thus have
some sort of life cycle. When increasing the source from
0, the qualitative dynamics of the system does not change
smoothly. Rather, it turns out that there is a critical value
for the source sc below which the population is mostly 1
and above which population growth and more complex
dynamics are possible. This critical source is depicted in
Figure 1 and was determined as the source value at which
the ratio of a single cell population to a multi cell popula-
tion is 0.5 over a time span of one million time steps after
a transient of half a million time steps.

The main effect of further increasing s above sc is an
increase of the average population.

1 Since the coherent phase in a strict sense does not exist
when s �= 0, it is not mentioned in [22] giving rise to only three
main phases.
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Fig. 1. The critical value of the source sc below which the
population is mostly 1 and above which population growth
can occur.

3 Sources greater than sc

When the source term s is greater than sc, the population
is generally larger than N = 1 for any value of K > 0.
For very small K, roughly in the range from 0 to 1.6, the
system is mostly coherent with a single cluster as can be
seen in Figure 2a. Then, roughly for K ranging from 1.6
to 3.0, the system is in the ordered phase of which an
example is given in Figure 2c.

When increasing K, the disorder generated by cell di-
vision increases to the point where (some) cells can grow
up to the division point Tg without joining a cluster. This
happens roughly for K = 3.0 and marks the start of the
partially ordered phase where cluster numbers can range
from 1 to N . For smaller nonlinearities in this phase (i.e.
for K ≈ 3.1), there is a (very) long transient during which
cells grow and divide giving rise to an increasing popu-
lation until at some stage the source term becomes in-
sufficient to support rapid growth in the x-values of the
cells. The slower growth allows the cells to be attracted
to a single cluster which will then grow and divide. Upon
division, however, most of the newborn cells do not sur-
vive and the population collapses after which the cycle
starts over again [22]. This is shown in Figure 3a with the
corresponding population strip chart in b).

After the transient, long-living clusters can emerge.
These coexist with (a smaller number of) non-clustered
cells. While the x-values of these clusters fluctuate around
some level, their size increases gradually by the joining of
non-clustered cells. Generally, this joining of non-clustered
cells does not affect the average population size of the
non-clustered cells which grow and divide rapidly. At some
stage, however, as the amount of source s per cell decreases
with the increasing overall population size, a single coher-
ent cluster may still emerge which will grow until Tg is
reached. As is the case for smaller K, upon cell division
of a single large cluster, oftentimes most of the new cells
die rapidly and the population collapses. This situation
is depicted in Figure 3c where the long-living clusters are

drawn with a thick line with the corresponding population
strip chart given in d).

Towards the end of the partially ordered phase, from
around K ≈ 3.3, after a transient of 106 to 107 time steps
with dynamics similar to the one described in the pre-
ceding paragraph, a rather stable system of co-existing
long- and short-living cells emerges. Figure 4a shows the
state of the system after 62 million time steps. The pop-
ulation at this point in time fluctuates around 2087 cells
with 1318 cells in the cluster represented by the upper
thick line and 746 cells in the cluster represented by the
lower thick line. While, by inspecting the ages of the cells
in the clusters, it is clear that cells keep on joining the
clusters occasionally, what is notable is that about half
of all the cells are older than 50 million time steps (di-
vided in a roughly 2:1 ration over the two large clusters).
This indicates that population collapses have not occurred
during this time and that the system is very stable (it
is of course possible that the population will eventually
collapse, however, this was not observed in several runs
of 108 time steps). A key factor may be the relative sizes
of the long-living clusters which were found to be in a
ratio of roughly 1:2. Other ratios did not seem to sur-
vive very long. Note that in reference [22] only relatively
short simulation times were investigated and that hence
the emergence of the stable populations described here
was not observed. The co-existence of long-living cells can
be found from around K ≈ 3.3 to K ≈ 3.45 (see also
Fig. 7) with a decrease of the average population size for
increasing K.

It is found that the dynamics of the system is sustained
by the co-existence of the short-living cells. At the time
point indicated by the arrow in Figure 4c, the nonlinearity
of the short-living cells was manually set to K = 0. Within
1000 time steps this led to the extinction of this group of
cells after which the two large clusters merged into a single
coherent cluster. As previously, once this cluster divided,
most of the cells died and the population collapsed as can
clearly be seen in Figure 4d.

The dynamical differences between the regimes can
also be seen when considering the population histograms
depicted in Figure 5. In the coherent phase shown in Fig-
ure 5a, the population fluctuates around a fixed value (in
this case N = 12). In this phase, when the cells split, all
the daughter cells may survive for a short time leading to
a brief doubling of the population size. This is reflected in
a minor peak in the histogram (in this case N = 24). How-
ever, some daughter cells will then die rapidly restoring the
population to its preferred size (in this case N = 12). In
the ordered phase, populations can grow larger but col-
lapse at some stage as can be inferred from Figure 5b.
The coexistence of long and short living cells in the par-
tially ordered phase leads to a steadily increasing popula-
tion and hence the population histogram remains roughly
flat in Figure 5c (Although the population size steadily
increases, when a large cluster splits, a sudden jump in
the population size is possible leading to the type of gap
visible around N = 43 000). As can be expected, the his-
togram for the desynchronized phase is bell-curve like as
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Fig. 2. Ordered phase after a transient of 105 time steps. The nonlinearity K is set to 1.0 in a) and b) which are nearly coherent
except for a short time span after the cell divisions. In c) and d), K is set to 2.0. Graphs a) and c) depict the temporal evolution
of the individual cells x-values while b) and d) show the corresponding population strip charts. 105 time steps were discarded
as transients and the source was set to s = 0.1.
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Fig. 3. Partially Ordered Phase with and without long-living cell clusters. In a) and b), the nonlinearity was set to K = 3.1
while in c) and d) is was set to K = 3.2. In a) the situation during the long transient when there are no long-living cell clusters is
depicted. In c), long-living cell clusters are indicated by the thicker lines. These clusters show no overall growth for long periods
of time as can be seen by inspecting the area inside the ellipse. 106 time steps were discarded as transients and the source was
set to s = 0.1. Graphs b) and d) are the population strip charts corresponding to graphs a) and c) respectively.

can be seen in Figure 5d. Age distributions corresponding
to Figures 4a and 5c are shown in Figure 6. The peak in
Figure 6a corresponds the splitting of a large cluster which
led to particularly many cells to be attracted to a long-
living cluster, while the peak in Figure 6b corresponds to
the cells which formed the initial long-living cluster.The
fact that remaining data points are greater than zero (i.e.
that there are cells of all ages) indicates the gradual at-
traction of cells to one of the clusters.

Near the transition from the partially ordered to
the desynchronized phase, the coexistence of short- and

long-living cells can also occur for relatively small popu-
lations as compared to the situation depicted in Figure 4.
Figure 7 shows the system after 1.4× 108 time steps when
the population N ≈ 45. The two peaks in the popula-
tion histogram Figure 7a are the result of the emergence
of coexisting short- and long-living cells. The left hand
peak corresponds to the transient situation without long-
living cells and the right hand peak is the sum of the
contribution of the short-living cells (in shape identical
to the left hand peak) and the fixed number of long-
living cells. At this point in time, there are 17 cells with
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ages ranging from 383 to 2560 time steps, one cell with
age 19185320 time steps and 25 cells with ages ranging
from 22202336 to 22788487 time steps. Figure 7b shows
the time evolution of the population size while c) depicts
the cell states (plotted every 100th time step). The thick
line around xn = 4.5 corresponds to the long-lived cluster.

The introduction of a maximum life span would clearly
have a drastic impact on the dynamics. For example if it
were relatively short, the longer-living clusters which even-
tually attract the other cells to form a coherent cluster
would not form thus decreasing the value of the nonlin-
earity K at which the partially ordered phase ends and
the disordered phase starts.

For values of the source larger than sc, the phases are
summarized in Table 1.

4 Sources smaller than sc

Since an external source may not always be available, and
since any finite source will eventually be exhausted by a
rapidly growing population, it is of interest to investigate
the dynamics of the model with s set to zero. The model
then becomes

xi
n+1 = xi

n +
K

2π
sin

(
2πxi

n

) − 1
N

∑

j

K

2π
sin

(
2πxj

n

)
. (4)

As is the case in equation (1), unless cells are removed
from or added to the system, the sum of the cells

∑
j xj

is constant.
There are four main types of dynamical behavior with

examples of three of them depicted in Figures 8–10: peri-
odic, quasi-periodic and chaotic. For all figures, the first

one million time steps were discarded and the initial value
x0 of each cell was randomly set to a value between 5 and
6 in order for the cells to be able to grow or shrink some-
what without immediately splitting or dying. In all the
figures, the left hand side depicts a strip-chart indicating
the time evolution of xi

n while the right hand side depicts
the corresponding return map.

4.1 Phase diagram

While the model in equation (4) allows for cells to be
added and removed, this only happens for sufficiently large
values of the nonlinearity K. Furthermore, the dynamics
of the model is also dependent on the initial number of
cells. A phase diagram for values of K ranging from 2 to 6
and for initial numbers of cells N◦ ranging from 1 to 100
is depicted in Figure 11 (for N◦ = 1, x0 is a trivial fixed
point).

The phase-diagram can roughly be divided into 5 parts
although the boundaries may not be very sharp (for ex-
ample, the transition from region III to IV/V is quite
smooth):

I Periodic Orbits : In this region all the attractors are
periodic as a reflection of the underlying local map’s
periodicity. Figure 8 shows a typical orbit in this re-
gion. There is no division and death in this region.

II Quasi-periodic and Periodic Orbits: There are two co-
existent routes to chaos in a rather narrow region pre-
ceding region III. A typical example of a quasi-periodic
trajectory is shown in Figure 9. As is the case with re-
gion I, there is no division and death.

III Chaotic, Quasi-periodic and Periodic Orbits: This re-
gion is characterized by the coexistence of chaotic,
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Table 1. Summary of the phases when s = 0.1.

Phase Ordered Phase Partially Ordered Phase Desynchronized Phase
Clusters 1 or a few Fluctuates between 1 and N Approximately N
Population Decreases from around 80 for

K = 0.1 to around 6 for K = 3.0
Goes through 3 distinct stages:
Desynchronized with a stable pop-
ulation, coexistence of short- and
long-lived cells with (possibly) a
slowly growing population, and or-
dered (coherent) with population
collapse when the cells split.

Small with an average of around 40
for K = 3.5 to 2 for K = 6.0

N0 dependence None None When N0 is very large (e.g. 1000),
stable clusters can form

K 0 < K � 3.0 3.0 � K � 3.45 3.45 � K � 6.5
Notes Up to K ≈ 1.6 order is rather

strictly coherent, afterwards split-
ting leads to slight fluctuations and
possibly short term lager popula-
tions (giving a straight line in the
semi-log plot of the population-size
histogram).

After a rather long transient, the
formation of coherent clusters was
no longer observed and the system
appeared to remain in a state of co-
existing short- and long-living cells
thus showing a clear differentiation
of roles.
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quasi-periodic and periodic attractors. Since, as is the
case for regions I and II, there is no division and death,
the initial number of cells is conserved. For increasing
nonlinearity and large values of N◦, the cluster dis-
tribution changes from roughly N1 ≈ N2 ≈ 0.5 near
region I to a somewhat more spread out distribution
near region IV (cluster sizes ranging from 1 to 60 cells
were observed for N = 100).

Relatively the largest variety of cluster combinations
was observed in the region marked as IIIa. It seems
that an increase in the population has an adverse effect
on the potential diversity in the system.
Since as such, the attractors of N◦ = 5 are also attrac-
tors of N◦ = 100, division and death should also occur
to the right of the dashed line in region III. However,
the stability may be different and indeed, in about 500
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trials not a single such event was found indicating that
they are probably unstable.

IV Cell Division and Death: This region is basically a
transient to region V. Large populations cannot be sus-
tained and are rapidly reduced to order 1.

V Chaotic, Quasi-periodic and Periodic Orbits & Final
State of IV : As in region III, periodic, quasi-periodic
and chaotic attractors coexist in this region. During
the transient, however, division and death are frequent.
After the transient has died out, divisions and death do
no longer occur and hence (with the current cell divi-
sion scheme where both the daughters receive roughly
half the parent cell’s fractional x-value), none of the
five regions allows for sustained life cycles.

Basically, the main types of phases as described by
Kaneko [22] can be found in the the phase-diagram

Figure 11 as well. Even so, there are some quite signif-
icant differences between models (1) and (4), i.e. between
the cases where s = 0 and s �= 0. A description of these
differences is given below.

• Coherent Phase: For small K, there is a strong at-
traction to a coherent attractor. In the s �= 0 case,
this attractor is not completely persistent however due
to the incoherence that can be introduced when cells
divide. Even for K = 0.1, e.g., coherence cannot be
maintained for long times. Hence, as such, a strictly
coherent phase does not exist when there is an exter-
nal source term. When s = 0, the coherent attractor is
the only attractor for small K. Since the global sum-
mation term and the local nonlinear term cancel out
in Figure 4 when xi is uniform, coherent attractors can
be found for any value of K (in region V they are quite
common, less so in region III).

• Ordered Phase: When s �= 0, the ordered phase oc-
curs for not too large values of the nonlinearity K and
(when considering increasing K) precedes the partially
ordered phase. In the ordered phase, cells have quite
a strong tendency to be synchronized but are not con-
tinually so. Generally (especially after the initial tran-
sients have died out) some desynchronization occurs
when cells split. A characteristic feature of the ordered
phase is that the final number of clusters is not depen-
dent on the system size as long as it is not too small.
This was also observed to be the case for the periodic
and quasi-periodic orbits in regions II – V for the ex-
ternal source-free case where elements synchronize in
a few clusters regardless of N◦.

• Partially Ordered Phase: In the partially ordered
phase, system size independence of the cluster distribu-
tion is lost and cluster numbers can range from order 1
to N . For s �= 0, this phase occurs between the ordered
phase and the desynchronized phase which, in the ter-
minology of the globally coupled logistic map [8], is an
intermittent type of partially ordered phase since there
are two temporal regimes, one in which many cells are
desynchronized and one in which synchronization oc-
curs towards the end of that temporal regime. In the
s = 0 case, however, once the cluster distribution of
a periodic attractor has settled in, it will not change.
Hence the type of partially ordered phase encountered
is glassy, i.e. there is a coexistence basin-wise (rather
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than time-wise) of many different cluster distributions.
In the phase diagram, this type of dynamics can be
found in region III for large N near the border to re-
gion IV.

• Desynchronized Phase: In the desynchronized phase,
the behavior of the individual cells for s �= 0 is chaotic
and the number of clusters is mostly equal to N (there
can be some clustering for very short periods of time).
Furthermore, the total number of cells remains quite
small while cells continuously divide and die. For s = 0,
the chaotic dynamics in regions III – V clearly form a
desynchronized phase. Again, rather than being sepa-
rated from the other phases time-wise or parameter-
wise, the desynchronized phase of equation (4) coex-
ists with the other phases and is separated from them
basin-wise.

Roughly the differences can be summarized as follows.
When s = 0, the four phases can overlap for the same
value of K and hence have separate basins of attraction,
while for s �= 0 the phases are the consequence of the value
of K independent of the initial conditions.

4.2 Antiphase solutions

Due to the fact that the sum of the cells is constant as long
as cells do not divide or die, all attractors consisting of two
clusters are necessarily out of phase unless its a coherent
attractor. Consequently, in the case of a chaotic attractor
the orbit of one cluster exactly mirrors the orbit of the
other cluster. An example of this is shown in Figure 12a
where the two cells with the smaller values of x (the lower
two lines) are out of phase as compared to the cell with
the larger value of x (the upper line). Although the local
dynamics is only determined by the fractional part, this
behavior is not readily visible when plotting it as such as
can be seen in Figure 12b. This type of attractor is not lim-
ited to three-cell systems, at K = 3.5 with N◦ = 5 e.g. the
same type of attractor with N1 = 3, N2 = 2 was observed.
In some cases, there is remnant chaos and as a consequence
the composition of the cluster varies over time leading to
a type of chaotic itinerancy. This is depicted in Figure 13
where the cell with the x-value in the middle first is in
the same cluster as the cell with the lowest x-value and
then switches to form a cluster with the cell that has the
largest x-value. Since the switching is not very frequent,
the strip-charts only show every 2000th time step (the fig-
ure depicts the system after around 2.5 million time steps.
It was followed for another 100 million time steps and no
qualitative change in the dynamics was observed).

A similar but qualitatively different behavior is shown
in Figure 14. In this case, no clusters are formed but two
cells closely follow one another in a shadowing-like manner
with itinerant switches. In order to have some confidence
in the genericity of this behavior, the attractor was again
observed for one hundred million time steps with no signs
of a qualitative change.

These attractors coexist with quasi-periodic and peri-
odic attractors and also with chaotic attractors in which
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Fig. 12. Two-cluster antiphase solution. In a), the antiphase
dynamics can clearly be seen, in b) which only depicts the
dynamically relevant fractional part, however, this is not as
obvious. The value of the nonlinearity is K = 4.5 and the
initial number of cells is 5. After the transient has died out
and after discarding one million time steps, 2 clusters remain
with N1 = 2, N2 = 1.

neither antiphase clustering nor shadowing-like behavior
occurs (naturally sometimes the fractional parts of cells
are very close, this proximity is however not sustained
over longer time spans).

5 Dependence on settings

The most important parameter in equation (4) is clearly
the local nonlinearity K. Nevertheless, other settings like
the death and division conditions, the value of global cou-
pling term etc. can possibly have a significant impact.
In a certain sense these settings are somewhat similar to
boundary conditions and it is therefore useful to know
under what circumstances they need to be considered.

5.1 Death and division conditions

For s �= 0, it was found that the division and death con-
ditions generally do not qualitatively alter the dynamics
of the system as long as they are integers and Td < Tg.
Mostly this is also the case for s = 0 since as such the
dynamics are determined by the fractional part of xi

n. If
Tg − Td is too small however (e.g. 1 or 2), there is some
impact. In regions I, II and III of the phase diagram, the
death of a few cells (especially when N◦ is large enough)
is common without affecting the qualitative aspects (there
is also some shift in the boundaries between the regions),
and in regions III and IV, extinctions occur quite often for
larger values of the nonlinearity K.

5.2 Effects of the sum

As the global coupling term Sn given in equation (2) is
essential for the dynamics of the system and as this term
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Fig. 13. Two-cluster antiphase solution with chaotic itinerancy. At first the middle cell forms a cluster with the lower cell.
At the point in time indicated by the arrows it switches and forms a cluster with the upper cell. The strip-chart only shows
every 2000th time step and hence covers a time span of four hundred thousand time steps. The nonlinearity is K = 4.5 and the
initial number of cells was 4. After the transient has died out and after discarding one million time steps, 2 clusters remain with
N1 = 2, N2 = 1.
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Fig. 14. Shadowing-like antiphase solution with chaotic itinerancy. The strip-chart only shows every 50th time step and hence
covers a time span of forty thousand time steps. The nonlinearity is K = 3.5 and the initial number of cells was 3. After the
transient has died out and after discarding one million time steps, 3 single cell clusters remain with N1 = N2 = N3 = 1.

remains constant unless cells die, it was investigated
whether for a given S0 the basins of attraction for the
various attractors mainly depend on this sum or not. The
results are summarized in Table 2 and show that there is a
clear correlation between the dominant dynamics and the
initial value of the sum S0 for the medium strength nonlin-
earity in regions II and III. Not surprisingly, for small K,
the periodic nature of the local map determines the state
of the system while for larger K, the increased chaotic na-
ture of the local map soon wipes out any memory of the
initial condition.

The dependence of the dynamics on the initial sum
is mostly limited to small system sizes. For example, for
K = 3 and N◦ = 1000, 98 out of 100 runs ended on a
periodic 2-cluster attractor with each cluster containing
roughly half of the cells. The two remaining runs ended

on a chaotic attractor with one cluster containing roughly
half the cells, one cluster roughly one quarter of the cells
and some smaller clusters. Chaos was the strongest in the
small clusters with the larger clusters being nearly pe-
riodic. Since all the attractors of the smaller initial cell
populations are also attractors of the larger initial cell
populations (though the stability of the attractors may
change), the observed effects likely are due to a relative
increase of the basin volume of the dominant attractor.

When a cell dies, its contribution to
∑

j xj disappears
in equation (1) and hence as well in equation (4). As al-
ready pointed out in [22], this is a particularity of the
model. While the the value of a cell may be small, due
to the application of the (possibly highly nonlinear) lo-
cal map, the effects can be quite significant (even when
the system size is relatively large - e.g. around N = 100).
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Table 2. Summary of the dependence of the dynamics on S0.
The initial number of cells is N◦ = 5. A clear correlation be-
tween S0 and the final dynamics is found for medium strength
nonlinearities. m0.2 indicates that the results are modulo 0.2.

K S0 Dominant Dynamics

2 all Independent of S0

2.64 ≈ 0.10 − 0.14 m0.2 N1 = 3, N2 = 2 periodic

N1 = N coherent cluster

≈ 0.15 − 0.16 m0.2 N1 = 3, N2,3 = 1 periodic

N1 = N coherent cluster

≈ 0.17 − 0.18 m0.2 N1 = 3, N2,3 = 1 Quasiperiodic

N1 = N coherent cluster

≈ 0.19m0.2 N1 = 3, N2,3 = 1 periodic

N1 = 3, N2 = 2 periodic

≈ 0.2m0.2 N1 = 3, N2 = 2 periodic

above mirrored to 0.3 mirrored to 0.3

3 ≈ 0.07 − 0.08 m0.2 N1 = 3, N2 = 2 periodic

N1 = N coherent

≈ 0.09 − 0.11 m0.2 N1 = 3, N2,3 = 1 periodic

N1 = N coherent

≈ 0.12 − 0.13 m0.2 N1 = 3, N2 = 2 periodic

N1 = N coherent

≈ 0.14 m0.2 N1 = 3, N2,3 = 1 periodic

N1 = N coherent

≈ 0.15 m0.2 N1 = 3, N2 = 2 periodic

N1 = N coherent

≈ 0.26 m0.2 N1 = 3, N2,3 = 1 quasiperiodic

other values N1...k = 1 chaotic

N1 = 3, N2 = 2 periodic

4 ≈ 0.08 − 0.12 m0.2 N1 = N coherent cluster

other values Periodic and Chaotic Attractors

5 all Independent of S0

6 all Independent of S0

This is shown in Figure 15a where the thick solid line in-
dicates the fractional part of the sum. In b) the sum is
corrected by adding the the lost contribution of the dying
cells back by distributing their last x-values evenly over
the surviving cells as a one time source term. Clearly, the
temporal dynamics of the system is drastically altered and
consequently the relationship between initial conditions
and selected final state. Overall, however, no new types of
dynamics were observed.

5.3 Mutations

In order to find out whether there is some kind of evo-
lutionary stable attractor in equation (4), it was investi-
gated what the effects are of introducing mutation rates
in the nonlinearity K when s = 0. First, the nonlinear-
ity of a cell was mutated by a random value ∈ [−0.1, 0.1]
when the age of the cell was modulus the inverse of the

temporal mutation rate. Second, the nonlinearity was ad-
justed for a newborn cell with a probability equal to the
birth mutation rate again by changing K by a random
value ∈ [−0.1, 0.1]. Lastly, both mutation schemes were
applied simultaneously

In the cases where temporal mutations occur, for all
the mutation rates ranging from 0.1 to 0.001, all the K
and all N◦ investigated, the result seemed to eventually
be the same: A reduction of the population to a single cell
(except for a few cases where the fractional parts of x were
0 and 1

2 ).
Clearly, the effects of a mutation rate at birth can only

have an impact when the initial parameters lead to divi-
sion. When it does have an impact, however, the results
generally are as with the temporal mutation rate, a reduc-
tion of the population. The main reason for this is that
the model seems to have a rather strong bias towards cell
death and hence cell divisions are quite rare thus having
little impact.

Somewhat related is the case where there is an initial
random distribution of K. Again, for equation (4), the
qualitative effects do not seem to be very large.

However, when s > sc, the results of applying muta-
tions are more interesting. With an initial random dis-
tribution of K, the population can split into two groups
one of which rapidly growths and divides and one that
lives for a long time (when K ∈ [2, 5]). If the population
is small, the stable group will be eliminated eventually
(even though its life span is orders of magnitude larger
than that of the other group). An example is shown in
Figure 16 where one group remained stable for one mil-
lion time steps while the other group divides roughly every
1700 time steps. The population fluctuates around 35 cells.

6 Division strategies

In order to keep the global sum constant, the division
strategy chosen in [22] where the fraction above the di-
vision threshold Tg is divided among two daughter cells
seems to be quite natural. There are, however, many other
ways in which a cell in principle could divide and in order
to find out whether the division strategy has a significant
impact on the dynamics of the model, the effects of sev-
eral other strategies are investigated below. These strate-
gies are of course only relevant for regions where divisions
occur, and only some representative values of K and N◦
in areas IV and V were considered. All the attractors de-
scribed in the phase diagram Figure 11 continue to exist
since as such they are not dependent on cell division and
death.

6.1 Strategy: fixed fraction

The local dynamics is entirely determined by the frac-
tional part of xi and one could hence argue that the mag-
nitude of the fractional part is a key determining factor.
Therefore, it may seem reasonable that when a cell di-
vides, this attribute needs to be conserved and that the
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Fig. 15. For the model equation (1) as introduced and studied by Kaneko in reference [22], the sum indicated by the thick
solid line can vary widely as can be seen in a). In b) the sum is corrected and fixed over time. The initial number of cells is
N◦ = 10, the nonlinearity is K = 6 and the first 150 time steps are shown. In a), a periodic attractor is reached after about
120 time steps.
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Fig. 16. The initial number of cells is N◦ = 30 and the initial
nonlinearity is a random value K ∈ [2, 5]. The external source
term is set to s = 0.1. As depicted, the population fluctuates
around 35 cells with 18 rapidly growing cells that have K =
2.128075, 2 stable cells with that have K = 2.164091 (the upper
continuous line), and 16 stable cells that have K = 3.822824
(the lower continuous line).

conservation of this attribute will have an impact on the
overall dynamics of the population. This was not found to
be the case, however. Although the global sum is not pre-
served under this strategy, similarly to when a cell dies,
there seems to be little effect on the overall dynamics. It
would be straightforward to correct for the change in the
global sum but this inevitably would also change the phase
of the cells and thus largely negate the purpose of this di-
vision scheme. Nevertheless, this was tried and again no
significant impact was observed.

6.2 Strategy: half the parent

While the integer part of xi is not relevant for the evalu-
ation of the local map, it is nevertheless possible that the
collective dynamics does have some dependence on it since

cells might move through several bands before stabilizing.
From a conceptual point of view, one might further argue
that if xi stands for some generic physical quantity, giving
the two daughters of a cell each half the contents of the
parent cell is quite natural.

It was found that for N◦ larger than around 8–12 cells
in region V most initial conditions lead to a population
explosion. It appears that this population explosion can
be ascribed to the fact that the sum is not conserved when
a cell dies. When the sum is corrected as in Section 5.2
similar population explosions were not observed.

6.3 Sustaining life cycles

With the combination of daughter cells receiving half the
parent’s x-value and the correction of the global sum when
cells die, a significant qualitative difference as compared
to the strategy where both the daughters receive half the
fractional part, comes to light. When starting with N◦ in
region IV, the population no longer shrinks to region V but
remains roughly around its initial value despite frequent
divisions and deaths. Figure 17 shows a typical strip chart
after around one million time steps have passed. The age
of the oldest cell is only around 200 time steps. As can be
seen, the cells are basically desynchronized growing and
shrinking irregularly.

When starting from a certain initial population N◦,
the population will generally grow slightly and then fluc-
tuate randomly in a nearly Gaussian fashion until it falls
onto an attractor. Figure 18 shows the population size
histogram for the first one hundred thousand steps.

When increasing the initial population from N◦ = 5,
the transient time until reaching a periodic attractor at
first increases nearly exponentially but then starts to de-
cease again when the N◦ is large enough as can be seen in
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Fig. 17. Sustaining Life Cycles. The initial number of cells is N◦ = 20 and K = 6. For this figure the sum is kept constant
when a cell dies and when a cell divides, both daughters receive half the parent’s x-value plus or minus a small random value
δ < 10−5. As always, Td = 0 and Tg = 10.
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Fig. 18. Population histogram for the first 105 time steps. The
sum is kept constant when a cell dies and when a cell divides,
both daughters receive half the parent’s x-value plus or minus
a small random value of δ < 10−5. The initial number of cells
is N◦ = 500 and K = 6.

Figure 19. This seems to indicate that a periodic attractor
can be reached when a system size independent minimum
number of cells form a cluster. Since the average life span
of a cell is only a few hundred time steps, the population
goes through a very large number of life cycles.

When adding around 10% white noise, periodic attrac-
tors were no longer observed. Consequently, sustained life
cycles are dynamically possible in the current model when
the division strategy is such that both daughter cells re-
ceive about half of the parent cell’s x-value combined with
a sufficient amount of white noise.

7 Discussion and conclusion

The identification of models that display the dynamic
characteristics of highly complex systems is of great im-
portance for gaining insight into which aspects are essen-
tial and which aspects are peripheral. For systems with
a fixed size, coupled map lattices have played a signif-
icant role in identifying universality classes and hence
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Fig. 19. The average transient time of 100 runs for the division
strategy where the sum is kept constant where both daughters
receive half the parent’s x value plus or minus a small random
value of 1e-5. The nonlinearity is K = 6.

extensions that include the addition and removal of el-
ements seem to be both natural and relevant.

In this paper, one of the simplest coupled map lat-
tices with growth and death is studied. When the source
term is larger than a certain critical value it is found that
differentiation of roles can occur in a parameter region of
the partially ordered phase near the desynchronized phase
after a fairly long transient. When the initial population
is large and the nonlinearity not too small, it is further-
more shown that a previously employed cell division and
death strategy leads to a strong decimation of the popula-
tion without recurring life cycles when no external source
is present. The existence of life cycles is, however, a key
characteristic of biological systems and it’s lack in the no-
source scenario would diminish the value of the employed
coupled map as a toy model, especially since the source
term of the model does not have a one to one correspon-
dence to an external source in a natural environment (after
all the absence of the source term in the toy model neither
necessarily leads to death nor to the absence of dynamics).
It is found that the situation can be remedied by a nat-
ural modification of the division strategy combined with
the preservation of the internal source and some white
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noise leading to sustainable life cycles for a wide range of
parameter values.
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